Search

Large teams develop and small teams disrupt science and technology - Nature.com

  • 1.

    Guimerà, R., Uzzi, B., Spiro, J. & Amaral, L. A. N. Team assembly mechanisms determine collaboration network structure and team performance. Science 308, 697–702 (2005).

  • 2.

    Wuchty, S., Jones, B. F. & Uzzi, B. The increasing dominance of teams in production of knowledge. Science 316, 1036–1039 (2007).

  • 3.

    Hunter, L. & Leahey, E. Collaborative research in sociology: trends and contributing factors. Am. Sociol. 39, 290–306 (2008).

  • 4.

    Jones, B. F., Wuchty, S. & Uzzi, B. Multi-university research teams: shifting impact, geography, and stratification in science. Science 322, 1259–1262 (2008).

  • 5.

    Xie, Y. “Undemocracy”: inequalities in science. Science 344, 809–810 (2014).

  • 6.

    Milojević, S. Principles of scientific research team formation and evolution. Proc. Natl Acad. Sci. USA 111, 3984–3989 (2014).

  • 7.

    Falk-Krzesinski, H. J. et al. Mapping a research agenda for the science of team science. Res. Eval. 20, 145–158 (2011).

  • 8.

    Committee on the Science of Team Science. Enhancing the Effectiveness of Team Science (National Academies Press, Washington DC, 2015).

  • 9.

    Leahey, E. From sole investigator to team scientist: trends in the practice and study of research collaboration. Annu. Rev. Sociol. 42, 81–100 (2016).

  • 10.

    Paulus, P. B., Kohn, N. W., Arditti, L. E. & Korde, R. M. Understanding the group size effect in electronic brainstorming. Small Group Res. 44, 332–352 (2013).

  • 11.

    Lakhani, K. R. et al. Prize-based contests can provide solutions to computational biology problems. Nat. Biotechnol. 31, 108–111 (2013).

  • 12.

    Barber, S. J., Harris, C. B. & Rajaram, S. Why two heads apart are better than two heads together: multiple mechanisms underlie the collaborative inhibition effect in memory. J. Exp. Psychol. Learn. Mem. Cogn. 41, 559–566 (2015).

  • 13.

    Minson, J. A. & Mueller, J. S. The cost of collaboration: why joint decision making exacerbates rejection of outside information. Psychol. Sci. 23, 219–224 (2012).

  • 14.

    Greenstein, S. & Zhu, F. Open content, Linus’ law, and neutral point of view. Inf. Syst. Res. 27, 618–635 (2016).

  • 15.

    Christensen, C. M. The Innovator’s Dilemma: The Revolutionary Book That Will Change the Way You Do Business (Harper Business, New York, 2011).

  • 16.

    Klug, M. & Bagrow, J. P. Understanding the group dynamics and success of teams. R. Soc. Open Sci. 3, 160007 (2016).

  • 17.

    Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).

  • 18.

    Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

  • 19.

    Bose, S. N. Plancks Gesetz und Lichtquantenhypothese. Z. Physik 26, 178–181 (1924).

  • 20.

    Einstein, A. Quantentheorie des einatomigen idealen Gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften 1, 3 (1925).

  • 21.

    March, J. G. Exploration and exploitation in organizational learning. Organ. Sci. 2, 71–87 (1991).

  • 22.

    Funk, R. J. & Owen-Smith, J. A dynamic network measure of technological change. Manage. Sci. 63, 791–817 (2017).

  • 23.

    Moody, J. The structure of a social science collaboration network: disciplinary cohesion from 1963 to 1999. Am. Sociol. Rev. 69, 213–238 (2004).

  • 24.

    Ke, Q., Ferrara, E., Radicchi, F. & Flammini, A. Defining and identifying Sleeping Beauties in science. Proc. Natl Acad. Sci. USA 112, 7426–7431 (2015).

  • 25.

    Wang, D., Song, C. & Barabási, A.-L. Quantifying long-term scientific impact. Science 342, 127–132 (2013).

  • 26.

    Evans, J. A. Electronic publication and the narrowing of science and scholarship. Science 321, 395–399 (2008).

  • 27.

    Gerow, A., Hu, Y., Boyd-Graber, J., Blei, D. M. & Evans, J. A. Measuring discursive influence across scholarship. Proc. Natl Acad. Sci. USA 115, 3308–3313 (2018).

  • 28.

    Uzzi, B., Mukherjee, S., Stringer, M. & Jones, B. Atypical combinations and scientific impact. Science 342, 468–472 (2013).

  • 29.

    Kuhn, T. S. The function of measurement in modern physical science. Isis 52, 161–193 (1961).

  • 30.

    Collins, D. Organizational Change: Sociological Perspectives (Routledge, New York, 1998).

  • 31.

    Jones, B. F. The burden of knowledge and the ‘death of the Renaissance man’: is innovation getting harder? Rev. Econ. Stud. 76, 283–317 (2009).

  • 32.

    Alcácer, J., Gittleman, M. & Sampat, B. Applicant and examiner citations in U.S. patents: an overview and analysis. Res. Policy 38, 415–427 (2009).

  • 33.

    Schulz, C., Mazloumian, A., Petersen, A. M., Penner, O. & Helbing, D. Exploiting citation networks for large-scale author name disambiguation. EPJ Data Sci. 3, 11 (2014).

  • 34.

    Mutz, R., Bornmann, L. & Daniel, H.-D. Cross-disciplinary research: What configurations of fields of science are found in grant proposals today? Res. Eval. 24, 30–36 (2015).

  • 35.

    Le, Q. & Mikolov, T. Distributed representations of sentences and documents. In Proc. 31st International Conference on Machine Learning (eds Xing, E. P. & Jebara, T.) 1188–1196 (PLMR, Beijing, 2014).

  • 36.

    Correia, S. A feasible estimator for linear models with multi-way fixed effects. Preprint at http://scorreia.com/research/hdfe.pdf (2016).

  • 37.

    Full text of Alfred Nobel’s will, available at https://www.nobelprize.org/alfred-nobel/full-text-of-alfred-nobels-will/ (accessed 25 September 2018).

  • Let's block ads! (Why?)

    https://www.nature.com/articles/s41586-019-0941-9

    Bagikan Berita Ini

    0 Response to "Large teams develop and small teams disrupt science and technology - Nature.com"

    Post a Comment

    Powered by Blogger.